ESC194 Unit 6.2

Aspen Erlandsson

November 21, 2022

Abstract

1 6.2

Definition: A logarithm function is a non-constant differentiable function f, defined for all real numbers between 0 and infinity, such that for all $a > 0$ and $b > 0$:

$$
f(a \cdot b) = f(a) + f(b)
$$

Properties:

$$
f(1) = 0
$$

$$
f(\frac{1}{x}) = -f(x)
$$

$$
f(\frac{x}{y}) = f(x) - f(y)
$$

$$
f'(x) = \frac{1}{x} \cdot f'(1)
$$

Proof:
\n
$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$
\n
$$
f'(x) = \lim_{h \to 0} \frac{f(\frac{x+h}{2})}{h}
$$
\n
$$
= \frac{1}{x} \lim_{k \to 0} \frac{f(1+k) - f(1)}{h}
$$
\n
$$
= \frac{1}{x} \cdot f'(x)
$$
\nChoose $f'(1) = 1$ therefore $f'(x) = \frac{1}{x}$
\n
$$
f(x) = \int_{1}^{x} \frac{dt}{t}
$$

Definition: Natural Logarithm Function

$$
ln(x) = \int_1^x \frac{dt}{t} x > 0
$$

Peoperties: 1) $ln(x)$ defined on $(0, \infty)$ $(\ln(x))' = \frac{1}{x}$ \overline{x} for $x > 0$: $(ln(x))' > 0$ therefore increasing 2) $ln(x)$ is continuous, since it's differentiable 3) for $x > 1, ln(x) > 0$ 4) for $0 < x < 1, ln(x) < 0$ 5) $ln(a \cdot b) = ln(a) + ln(b)$

 $ln(ax) = ln(x) + ln(a)$

6)

$$
\frac{p}{\ln(x^q)} = \frac{p}{q}\ln(x)
$$

7) Range of ln(x) is $(-\infty, \infty)$ Proof of range:

 $M > 0$ imposed, M very large Show that $ln(x) > M$ for $x > x_0$ We have:

$$
ln(2) = \int_1^2 \frac{dt}{t} > 0
$$

Property of real numbers infinite extent:

 $nln(2) > M$

Therefore:

$$
x_0 = 2^n
$$

Therefore: $ln(x) > M$ whenever $x > x_0 = 2^n$ Therefore:

$$
\lim_{x \to \infty} \ln(x) = \infty
$$

9)

$$
ln(e^{\frac{p}{q}} = \frac{p}{q})
$$

10) Convention: $ln(x)$ is log base e of x

$$
ln(x) = log_e(x)
$$

11)

$$
ln(x)' = \frac{1}{x} > 0
$$

Therefore increasing

$$
\ln(x)''=\frac{-1}{x^2}<0
$$

Example:

 $f(x) = ln(1 - 2x^2)$ $\frac{d}{dx}ln(1-2x^2) = \frac{-4x}{1-2x^2}$ $1 - 2x^2$

Due to domain it's required that $1 - 2x^2 > 0$ Therefore

$$
\frac{-1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}
$$

also:

$$
\lim_{x \to \pm \frac{1}{\sqrt{2}}} ln(1 - 2x^2) = -\infty
$$

Therefore:

Chain Rule: $\frac{d}{dx}ln|u| = \frac{1}{u}$ u $\frac{du}{dx}$, $u \neq 0$ Example: $f(x) = \ln |1 - 2x^2|$ for $x^2 > \frac{1}{2}$ $\frac{1}{2}$, $f(x) = ln(2x^2 + 1)$ $f'(x) = \frac{4x}{2a}$ $\frac{1}{2x^2-1} =$ $-4x$ $1 - 2x^2$ as $x \to \pm \infty ln(2x^2 - 1) \to ln(2x^2) = ln(2) + 2ln|x| \approx 2ln(x)$ at $x = \pm 1, 2x^2 - 1 = 1$ therefore $ln 2x^2 - 1 = ln(1) = 0$ Graph:

$$
f(x) = \frac{1+x}{1-x}
$$

Simplify:

Example:

$$
ln(1+x) - ln(1-x)
$$

$$
f'(x) = \frac{1}{1+x} - \frac{-1}{1-x} = \frac{2}{1-x^2}
$$

$$
f''(x) = \frac{4x}{(1-x^2)^2}
$$

Domain:

$$
\frac{x+1}{x-1} > 0
$$

when: $1 + x > 0$ and $1 - x > 0$ leads to: $-1 < x < 1$ when: $1 + x < 0$ and $1 - x < 0$

leads to: $x < -1$ and $x > 1$, not possible!

Therefore function lies between -1 and 1 only

$$
f(-x) = \ln(\frac{1-x}{1+x}) = -\ln(\frac{1+x}{1-x}) = -f(x)
$$

therefore odd function

 $f' > 0$ for all x in $(-1, 1)$, therefore increasing

 $f'' < 0$ for $-1 < x < 0$ therefore concave down

 $f'' > 0$ for $0 < x < 1$ therefore concave up

